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Abstract
We discuss recent developments and present new findings on the structural
and phase properties of dipolar model fluids influenced by various external
perturbations. We concentrate on systems of spherical particles with permanent
(point) dipole moments. Starting from what is known about the three-
dimensional systems, particular emphasis is given to dipolar fluids in different
confining situations involving both simple and complex (disordered) pore
geometries. Further topics concern the effect of quenched positional disorder,
the influence of external (electric or magnetic) fields, and the fluid–fluid
phase behaviour of various dipolar mixtures. It is demonstrated that due to
the translational–orientational coupling and due to the long range of dipolar
interactions even simple perturbations such as hard walls can have a profound
impact on the systems.
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1. Introduction

In recent years, the physics of complex fluids such as colloidal dispersions, liquid crystals,
polymers, biopolymers, and emulsions has attracted growing interest [1], stimulated partly by
the important role of these materials in a variety of technological applications. The present
topical review deals with class of complex fluids which we call ‘dipolar fluids’. These consist of
particles with an electric or magnetic dipole moment. The resulting dipole–dipole interactions
are complex in the sense that they are strongly direction dependent and of long range. Recent
theoretical and experimental research has demonstrated that fluids with dominant dipole–dipole
interactions can display new, unexpected behaviour such as self-assembly of the particles into
dipolar chains [2], and crystallization into novel structures [3, 4]. These developments have
rejuvenated the interest in understanding dipolar fluids by statistical mechanical methods.

Historically, research on dipolar fluids was mainly motivated by the importance of dipolar
forces in molecular liquids, the majority of which consist of polar molecules with permanent
electric dipole moments [5–7]. Examples are, of course, water, but also chloroform, methanol,
and acetonitrile. The dipolar interactions in these systems are important not only for the
solvation properties; they also lead to a significant increase of the vapour–liquid critical
temperature relative to typical non-polar fluids [7]. Dipolar interactions also have an impact
on the phase behaviour of liquid crystals [8, 9] where they can stabilize or destabilize certain
mesophases [9]. However, as far as structural properties are considered, dipolar interactions in
molecular complex fluids are often less determinant than other factors such as van der Waals
forces, anisotropic steric forces, or hydrogen bonding [7].

This is different in several colloidal systems where dipole–dipole interactions may indeed
play a key role. An important example is ferrofluids [10–13], which are suspensions of single-
domain ferromagnetic nano-particles in carrier liquids such as water or oil. Due to the large
(permanent) magnetic dipole moments, ferrofluids are extremely sensitive to external magnetic
fields. The accompanying structural and rheological effects [13] such as formation of long
chains and the resulting dramatic increase of the viscosity have led to a broad variety of
technical applications. On the other hand, some strongly coupled ferrocolloids self-assemble
into chains even in the absence of an external field [14]. An example is given in the left part
of figure 1.

In colloidal dispersions consisting of superparamagnetic particles, dipolar interactions
between the particles can be induced by an external magnetic field. Particular attention
has recently been given to two-dimensional realizations of magnetic colloids, with repulsive
interactions generated by an out-of-plane magnetic field [15–17]. These systems have
proven to be excellent experimental ‘model systems’ to study the two-dimensional freezing
transition [18]. Further systems with induced dipoles are magnetorheological [19, 20]
and electrorheological fluids [21–23] where the external magnetic/electrical fields can
generate various patterns [24] and structural transitions accompanied by dramatic changes
of the rheological behaviour [25]. In this context, an aspect receiving increasing
interest is the micromechanical properties of the chains formed at intermediate field
strength [26, 27, 29, 28, 30]. On the other hand, the solid structures formed in
magnetorheological fluids at high field strengths are discussed as candidates for the generation
of novel magnetic crystals [31–33]. We finally mention colloidal polarizable particles subject
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Figure 1. Left: cryo-transmission electron micrographs (TEMs) [14] of metallic iron particles
suspended in decalin in the absence of an external magnetic field. The radius of the iron core of the
particles gradually increases from ferrofluid B (6 nm) to ferrofluid E (8 nm), yielding an increase
of the magnetic dipole moment and a corresponding increase of the dipolar coupling between the
particles. Right: field-induced crystallization [34] of latex spheres (diameter 1.4 µm) on a glass
surface with an in-plane electric field. (a) Homogeneous fluid phase before application of the field.
(b) Formation of chains in field direction. (c) Formation of a two-dimensional crystal due to lateral
interactions between the chains.

to spatially varying electric fields (dielectrophoresis) [34–37]. Figure 1 (right) illustrates the
behaviour of such systems in two dimensions (with in-plane induced dipoles).

The above examples demonstrate the richness of phenomena induced by dipolar
interactions. They also illustrate that, in many cases of practical interest, dipolar fluids are
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subject to external perturbations such as confinement or magnetic (electric) external fields.
Understanding the impact of such perturbations on the material properties of dipolar, and any
complex, fluid thus becomes more and more important [38]. Only very recently, however,
basic questions concerning simple bulk dipolar model fluids have been solved, and a deeper
understanding of the impact of perturbations such as confinement is just starting to emerge.

The goal of the present topical review is to summarize and discuss recent theoretical
progress concerning the structure and phase properties of dipolar fluids influenced by various
time-independent perturbations. That is, we do not address here the properties of systems
subject to shear flow [25] or other time-varying (e.g., rotating magnetic [39–41]) fields.
Moreover, we concentrate on fluids of spherical particles and permanent (point) dipole
moments, for which bulk behaviour has been intensely studied in the last decade [2]. Systems
with induced dipoles are only briefly touched on. The same holds for quasi-two-dimensional
dipolar fluids, which have been considered in a recent review of Weis [42]. We also note that
the model fluids considered in this review are frequently used as model ferrofluids, for which
equilibrium properties have been recently summarized by Huke and Lücke [43].

This topical review is organized as follows. In section 2 we present a summary of recent
results concerning bulk dipolar model fluids. The subsequent sections are each devoted to a
different type of perturbation. To begin with, we discuss in sections 3 and 4 the impact of
spatial confinement realized in simple confining geometries and in disordered porous media,
respectively. Further topics concern the effect of quenched positional disorder (section 5),
the influence of external magnetic or electric fields (section 6), and the fluid–fluid phase
behaviour of dipolar fluids with non-uniform dipole moments (section 7). Finally, some overall
conclusions for dipolar fluids under external perturbations are drawn in section 8, where we
also discuss open problems in this context and the theoretical and computational challenges
that lie ahead.

2. The unperturbed system

The basic model underlying the following discussions is a three-dimensional, one-component
dipolar fluid consisting of spherical particles (diameter σ ) with permanent point dipole
moments µi . The resulting pair potential has the form

u(12) = uSR(r) + uDD(12), (2.1)

where uSR(r) is some short-range potential, which depends only on the interparticle separation
r = |r| = |r1 − r2|, and the second term in (2.1) represents the dipole–dipole interaction

uDD(12) = µ1 · µ2

r3
− 3

(µ1 · r)(µ2 · r)

r5
. (2.2)

One characteristic feature of uDD is its long range: it decays only as r−3 and therefore much
slower than, e.g., the van der Waals interactions between two molecules [5]. Secondly, the
interaction is strongly anisotropic in the sense that it favours—depending on the spatial
configuration of two particles—rather parallel or antiparallel alignment, or something in
between. In particular, the energetically most favourable configuration of two dipolar spheres
of diameter σ is a head-to-tail alignment, whereas two spheres lying side-by-side prefer to
point antiparallel instead of parallel. Both features—range and anisotropy—are important to
understand the complex structural and phase behaviour of such systems, as illustrated below.
However, a further important factor, particularly for the low-density behaviour, is the character
of the short-range potential uSR(r) supplementing the dipolar interaction [44, 2].

We start by considering systems where the short-range potential is purely repulsive.
Common examples are so-called dipolar hard spheres (DHSs) or dipolar soft spheres (DSSs)
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Figure 2. Sketch of the phase diagram of bulk DHS and DSS fluids in the plane spanned by the
reduced density ρ∗ = ρσ 3 and the reduced temperature T ∗ = kBTσ 3/µ2. The symbols in the low-
density regime denote states where MC simulations reveal clustering and chain formation (solid,
open, and grey circles and the triangle correspond to results from [44] (DSS), [45] (DHS), [46]
(DHS), and [47] (DHS)). The cross indicates a critical point separating chained states as predicted
in [46]. The boxes in the high-density regime denote states with long-range parallel ordering of
the dipoles as predicted by MC simulations for DHS [48–50] (filled boxes) and MD simulations
for DSS [51, 52] (open boxes). Corresponding integral equation (RHNC) results [53, 54] and
modified mean-field theory (MMFT) results [55] for the phase transition between isotropic and
ferromagnetic/ferroelectric fluid states in DHS systems are indicated by the rectangle [53], the
solid line [54] (RHNC), and the dashed (MMFT) line [55].

defined by

u(12) = uHS(r) + uDD(12) (DHS), (2.3)

u(12) = uSS(r) + uDD(12) (DSS), (2.4)

where uHS(r) = ∞ (0) for r < σ (r > σ ) and uSS(r) = 4ε0(σ/r)12 is the hard- and soft-
sphere potential, respectively. Fluids of DHSs and DSSs display the same type of phase
behaviour, which is illustrated in figure 2. The sketched phase diagram focuses on the fluid
phase regime and contains results from a variety of recent studies based on Monte Carlo (MC)
and molecular dynamics (MD) computer simulations, integral equation techniques,and density
functional theory. We note that, even for the restricted density range considered in figure 2,
a complete picture for the low-temperature phase behaviour (including precise location of the
phase boundaries) still does not exist.

Chain formation

At high reduced temperatures T ∗ = kBT σ 3/µ2 (with kB being the Boltzmann constant),
that is when the thermal energy dominates the dipolar interactions, DHS/DSS systems form
an ordinary, homogeneous isotropic fluid state in the whole density range considered. This
changes at low T ∗ and low densities, where the anisotropy of the interaction drives the particles
to self-assemble into long clusters and chainlike structures. Interestingly, chain formation was
predicted as early as 1970 by de Gennes and Pincus [56].

However, only in the 1990s were chainlike structures directly observed in a number of MC
computer simulation studies of dilute DHSs/DSSs [44–47, 57]. These investigations suggest
that the self-assembled chains are ‘living polymers’ [47] which frequently break and recombine,
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rather than true chain ‘molecules’ with stable bonds. Moreover, the chain formation seems to
suppress [44] the usual vapour–liquid transition, which was originally expected to occur since
the orientationally averaged, Boltzmann-weighted dipolar interaction between two DHS/DSS
particles is attractive. This discrepancy has stimulated a number of theoretical investigations
based on concepts such as polymer theory [47, 58–61], Debye–Hückel theory [62] and other
free energy approximations [63] (for a review,see [2]). These studies have helped to understand
some characteristics of the ‘chained state’ (such as the length distribution) observed in the
simulations, whereas the question as to why chain formation suppresses the vapour–liquid
transition (at the temperatures investigated) remains unsettled [2]. A main argument brought
up in this context is that as soon as the particles in the dilute gas have self-assembled into
chains the interactions between the chains become very weak and short ranged, leaving no
driving force for a condensation into a denser state [2]. We note, however, that more recent,
large-scale simulations of Camp et al [46] yield again a different picture where a critical gas–
liquid transition does indeed occur, but at extremely small values of the critical temperature
and density as indicated by the cross in figure 2. Also, the structure of the coexisting phases
is dominated by chains rather than by isotropic aggregates as in simple fluids. Based on these
results, Tlusty and Safran [64] have proposed to consider the transition as a ‘connectivity’
transition separating an ‘end-rich’ gas consisting of isolated chains and a denser, ‘junction-
rich’ liquid consisting of branched chains. We finally mention a recent study of strongly
interacting, dilute DSS fluids [65] where it was demonstrated, based on MD and Brownian
dynamics simulation, that chain formation is clearly reflected in the frequency-dependent
dielectric (magnetic) response. These results may be relevant for the interpretation of future
relaxation experiments on strongly interacting dipolar fluids [66].

Direct experimental observation of chain formation in the absence of external fields has
been recently achieved in thin layers of ferrofluids with dominating (magnetic) dipole–dipole
interactions [14, 67, 68] and other near-to-two-dimensional systems [42]. An illustration is
given in the left part of figure 1.

Long-range orientational ordering and some theoretical approaches

We now turn to dense, strongly coupled DHS/DSS fluids. For such systems, computer
simulations of the early 1990s [48–52] have revealed the occurrence of spontaneous
polarization1 within the fluid part of the phase diagram. The resulting state is characterized
by long-range parallel order of the dipole moments, and consequently a non-vanishing order
parameter P1 ≡ N−1| ∑N

i=1 µ̂i ·d̂| (the caret denotes unit vectors) involving a global director d̂.
At the same time, the translational structure is still short ranged. We note that in experiments
of ferrofluids, which are closest to the DHS/DSS models considered here, long-range order has
so far not been observed, possibly since the required density range (see figure 2) is beyond the
density range currently accessible in ferrofluids. Nevertheless, what has been reported [66] is
a strong increase of the magnetic susceptibility upon cooling a ferrofluid at ρ∗ ≈ 0.3, that is
the precursor of long-range parallel ordering.

Even among theorists the detection of ferroelectric/ferromagnetic, yet nematic, states in
simple dipolar fluids was quite a surprise in view of the anisotropic nature of the dipolar
interactions. Subsequent investigations (based on simulations [49, 52] and various levels of
density functional theory [69–73]) have indicated that the existence of such phases hangs
on several factors. First of all, and this is a consequence of the long-range character of
the interaction, parallel ordering of the whole system occurs only for appropriate boundary

1 To be consistent with the original literature on this phenomenon we use here the language appropriate for electric
dipoles.
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conditions, which do not result in any depolarizing fields. Examples are samples with the shape
of a long needle (with the ordering direction parallel to the long axis of the needle) [69–71], and
spherical samples immersed in a conducting medium. The latter situation is the one usually
considered in computer simulations [49, 52]. In other situations (such as spherical samples in
a vacuum) one expects the system to break off into polarized domains. The thermodynamic
conditions under which ordering occurs within one (macroscopically large) domain should
then be comparable to that of the whole system with ‘tin-foil’ boundary conditions [72, 73].

Each particle in the polarized fluid (or domain) feels not only the local field Elocal stemming
from its immediate neighbours, but also a mean field [74] generated by the parallel order of
the dipoles outside the local correlation sphere. This mean field is given by

EMF = (4π/3)P = (4π/3)ρµP1d̂, (2.5)

yielding an energy contribution U MF/V = −1/2 P · EMF = −(2π/3)ρ2µ2 P2
1 to the total

energy per volume V [75, 76]. The mean field thus favours parallel ordering, especially at
high densities.

The second reason for the existence of ferroelectric fluid phases is that the particles can
develop suitable short-range spatial correlations, which minimize the frustration stemming
from the anisotropy of the dipolar interaction in the local environment of a particle, and thereby
optimize the field Elocal. Specifically, the particles form long, parallel chains which tend to
align relative to each other such that neighbouring chains are out of registry [51, 52, 49].
Due to this arrangement, neighbouring chains indeed attract rather than repel each other,
as was first shown by Tao and Sun [3, 4] in the context of electrorheological fluids (where
the dipoles point parallel a priori). Clearly, the optimization of Elocal works even better
within polarized solid states and such states have indeed been found in computer simulations
at densities beyond those considered in figure 2. Several crystalline structures have been
observed, such as body-centred tetragonal [49, 51, 52], face-centred cubic [49], and body-
centred orthorhombic [49, 77]. However, the true (ground-state) structure of dense DHS/DSS
systems is still an open problem.

Given the complex interplay between long- and short-range correlations, it is clear that
theoretical predictions of the ferroelectric transition are rather challenging, even when only fluid
states are considered. In figure 2 we have included results from two different approaches. The
first one is density functional theory in the modified mean-field approximation (MMFT) [55]
(for more details, see section 7.1), which approach was established for dipolar fluids by Groh
and Dietrich [70, 71]. The MMFT locates the phase transition between the isotropic and the
ferroelectric liquid within the same density range predicted by the computer simulation results,
but the temperatures related to the onset of parallel ordering are much too high. This is since the
MMFT focuses on the mean field (2.5) as the driving force for spontaneous ordering, whereas
the competing short-range correlations are strongly underestimated. This aspect is somewhat
better taken into account by integral equation theory [78], which is the basis for the theoretical
predictions of Wei et al [53] and Klapp and Forstmann [54] included in figure 2. These authors
have numerically solved the exact Ornstein–Zernike (OZ) equation [79]

h(12) = c(12) + ρ

∫

d3 h(13) c(32) (2.6)

with h(12) = g(12) − 1 and c(12) being the total and the direct correlation
function, respectively, in combination with the reference hypernetted chain (RHNC)
approximation [80, 81]

g(12) = exp[−β u(12) + h(12) − c(12) + BHS(12)], (2.7)

with the hard-sphere Bridge function BHS(12) [80, 81] (the choice BHS(12) = 0 corresponds
to the conventional HNC approximation [78]). The results in figure 2 are based on the RHNC
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correlation functions for the isotropic fluid phase [82, 54], implying that ferroelectric phase
transitions are detected only via a divergence of the dielectric constant (and, respectively, by
a density functional estimate based on the isotropic correlations [53]). The corresponding
temperatures (see figure 2) significantly improve the predictions for the onset of long-range
parallel ordering compared to the MMFT. We finally mention two very recent theoretical
studies [83, 84] dealing with the onset of long-range ordering on the basis of exact expressions
for the singlet density combined with approximate correlation functions. The results [83, 84]
question again the very existence of spontaneous ordering, which is in contradiction to the
computer simulation results. Nevertheless, this discrepancy does illustrate the persisting
difficulties in understanding the low-temperature behaviour of DHS/DSS fluids, including
features such as the boundaries (and the nature of the related phase transition) between isotropic
and ordered phases.

2.1. The impact of attractive interactions

The model fluids discussed so far are suitable for the description of some sterically stabilized
dipolar colloids [85, 86], but not when polar molecular fluids [5–7] or dipolar colloidal systems
with dispersive interactions are considered. A common model incorporating dispersive,
i.e. isotropic attractive interactions is the so-called Stockmayer fluid defined by

u(12) = uLJ(r) + uDD(12), (2.8)

where the first term is the conventional Lennard-Jones (LJ) potential given by uLJ(r) =
4ε0((σ/r)12 − (σ/r)6). The ratio of dipolar relative to dispersive interactions can be measured
by the parameter m∗2 = µ2/ε0σ

3. In the limit m∗2 → ∞ (at fixed ε0 and σ ), the dipolar inter-
actions dominate, and the phase behaviour of Stockmayer fluids reduces to that of DSS fluids
discussed in the preceding paragraph. Upon decreasing m∗2, the main effect of the dispersive
interactions is the re-appearance of the vapour–liquid transition (within the isotropic phase).
Gibbs-ensemble Monte Carlo (GEMC) results for the corresponding coexistence curves of sys-
tems up to m∗2 = 6.0 have been obtained by Neumann [87] and van Leeuwen [7]. Theoretical
approaches such as MMFT [70, 71] and RHNC also predict an (isotropic) vapour–liquid coexis-
tence, e.g. at m∗2 = 4.0, with the RHNC critical temperature being very close to that predicted
by the GEMC simulations [54]. At higher densities Stockmayer fluids display ferroelectric
liquid and solid phases in analogy to the DHS/DSS systems. An exemplary phase diagram has
been recently obtained by Gao et al [77] on the basis of constant-pressure MC simulations.

3. Confinement by slit-pore geometries

Understanding the material properties of fluids confined to nanoscopic spaces plays a
central role in many applications involving porous materials [88, 89], in micro- and
nanofluidics [90, 91], in nanotribology [92–94], and in electrochemical applications [95].
The investigation of simple [96] and complex (such as dipolar) fluids in confinement is thus
a very active field of research [88]. In this section we focus on situations where a dipolar
fluid is confined to one single ‘pore’ space, specifically a slit pore defined by two plane-
parallel, infinitely extended walls. Though somewhat idealized, the slit-pore model does have
relevance in the context of well characterized materials such as activated carbon fibres or
MCM-41 [88, 89], in lubrication experiments [97], and, obviously, in situations where the
fluid is trapped between two planar surfaces such as electrodes.

Indeed, most of the earlier studies on confined dipolar fluids have focused on
electrochemical problems [95] involving the structure and ordering of polar solvents in the
vicinity of one or two planar electrodes. In these studies, the solvent is typically modelled
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as a system of pure DHS (see, e.g., [98–101]) or Stockmayer [102, 103] particles, but more
complex solvents such as binary dipolar mixtures [104, 105] and ion–dipole mixtures [106]
have been investigated as well. The latter systems display particularly interesting effects
such as a surface-induced demixing transition [106]. Many of these investigations have
been performed on the basis of (HNC-like) integral equation theories [99, 106] and density-
functional approaches [101, 104, 105, 107], which are approximate but computationally much
less expensive than computer simulations of confined dipolar fluids [98, 102, 103, 107–109].
Indeed, for simulations the combination of long-range dipolar interactions and reduced spatial
symmetry is still a challenge. In particular, well established bulk techniques such as the three-
dimensional Ewald summation [110, 111] have to be significantly modified [42], yielding
generally an increase in computational time (as compared to the bulk). Some simplifications
arise for confined fluids with induced dipoles such as electrorheological fluids between two
charged electrodes [112]. The experimentally observed complex structure formation [23] in
electrorheological fluids, involving self-assembly of the particles into chains, columns, and
sheets, has been partly reproduced in simulation studies [112, 39].

In the limit of vanishing surface separation the slit-pore geometry degenerates into a planar
confinement. Over the last five years, the resulting two-dimensional (2D) dipolar fluids have
been intensely studied, mostly by computer simulations (for a review, see [42]). Interest in 2D
systems (or thin dipolar films) has been triggered, on one hand, by recent experimental studies
involving dipole-coupled colloidalfilms containing very few or even only one layer of particles.
Examples are the systems illustrated in figure 1, Fe2O3-doped colloidal particles arranged on
water–air interfaces [15–17], which have turn out to be excellent model systems to study 2D
crystallization, and coated magnetic micro-spheres floating on a glycerin surface [31, 113].
Further motivation has been supplied by the behaviour of thin magnetic (solid) films [114, 115],
in which the interplay of dipolar, exchange, and surface interactions leads to a complex phase
behaviour (for a summary of corresponding simulation results see [42]).

Computer simulations of 2D fluids with permanent dipoles have so far focused on dilute
states. Results for 2D versions of DHS and DSS fluids (with three-dimensional dipole
moments) suggest that these systems do not condense but display chain formation [116–121]
in close analogy to what is observed in the bulk (see figure 2). Characteristic features of the 2D
chains have been investigated in [119, 120] on the basis of polymer theory. Finally, by adding
dispersive interaction one recovers again an ordinary vapour–liquid transition, as demonstrated
in GEMC simulations of 2D Stockmayer fluids [122].

Compared to the large number of data for 2D dipolar fluids, little is known about the
phase behaviour of dipolar fluid films with finite thickness. In the following we summarize
recent simulation results [123, 124] on strongly coupled DSS squeezed between smooth, non-
conducting walls.

3.1. Local and global ordering in strongly coupled confined fluids

Given the appearance of an orientationally ordered, yet liquid-like phase in bulk dipolar fluids
(see figure 2), a main question addressed by Klapp and Schoen [123, 124] was whether or not
spontaneous ordering of this type exists in nanoscopic slit pores. To this end they performed
MC simulations in a constant-parallel-pressure (P‖) ensemble, fixing temperature and dipole
moment at values where dense bulk DSS fluids are ferromagnetic.

It turns out that spontaneous ordering does indeed occur in certain ranges of the wall
separation Lz. Exemplary configurations of a system with Lz = 7σ are given in figure 3,
where the left and right parts correspond to the isotropic (low P‖) and ferromagnetic (high
P‖) phases, respectively. The displayed particles are those within one of the contact layers,



R534 Topical Review

x

y

z x

y

z

d

Figure 3. Two configurations of DSS particles in the contact layer of confined DSS fluids
(kBT/ε0 = 1.35 and µ/

√
ε0σ

3 = 3.0). Left: isotropic phase (P∗‖ = 1.0). Right: ferromagnetic
phase (P∗‖ = 5.0). The thick arrow labelled by ‘d’ denotes the direction of the global director in
the x–y plane. From [124].

that is the layers closest to the walls (note that layer formation, six layers in the present case,
is a generic effect in slit-pore confined systems [89]). The isotropic state is characterized
by the appearance of clusters and chains of particles with essentially random directions, as
expected for a dilute, strongly coupled dipolar fluid (see figure 2). In this regard, a main
effect of the spatial confinement is that the dipolar particles tend to form chains with in-plane
rather than out-of-plane orientation. This is reminiscent of the chain formation in true 2D
dipolar fluids [42]. The orientationally ordered state (right part of figure 3) of the confined
fluid is characterized by long, essentially straight chains aligned into a direction within the
plane parallel to the walls. The in-plane structure perpendicular to the chains is generally more
open, and inspection of the corresponding in-plane correlation functions [123] shows that the
ordered system is still liquid-like within the layers.

Comparing the confined fluid with its bulk counterpart, it turns out that the walls promote
rather than suppress spontaneous orientational order. This can be explained by the fact that
the director d̂ in the confined system is forced to point along an (arbitrary) direction parallel
to the walls (ordering in the normal direction would lead to surface charges, generating, in
turn, a demagnetizing/depolarizing field). Due to this restriction, which is absent in the bulk,
orientational fluctuations are constrained even in the isotropic phase and the ferromagnetic
transition occurs at significantly lower pressures/densities [123].

In view of the MC results at Lz = 7σ it is tempting to ask whether long-range parallel
ordering becomes even more promoted (relative to the bulk) when the wall separation further
decreases. However, the very existence of ferromagnetic liquid ordering in systems near 2D
is unclear at present [42]. Indeed, Klapp and Schoen [123] were not able to reach definite
conclusions on ferromagnetic ordering at wall separations Lz � 6σ , due to a strong increase
of equilibration time. We note that the structure of the solid phases of 2D dipolar fluids
is also unknown. Ground-state lattice calculations for 2D dipolar (magnetic) spin systems
have revealed various types of orientational ordering depending on the lattice structure, which
is expected due to the strong positional–orientational coupling of the dipolar interactions.
In particular, square lattices [125] and honeycomb lattices [126] display antiferromagnetic
ordering characterized by two or several sublattices. On the other hand, hexagonal lattices
support ferromagnetic ordering, as demonstrated by recent simulations of Russier [127].
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4. Confinement by disordered porous media

So far we have considered only situations where the fluid is confined to one single pore
space. However, real porous solids most often contain an interconnected network of
pores of various sizes and shapes [88]. Prominent examples for such disordered porous
materials are mesoporous glasses such as Vycor and CPG (controlled pore glass), which are
typically characterized by a relatively low porosity (i.e., the volume fraction of the space
available for the adsorbed fluid) of 30–60%, and (silica) aerogels, which are formed by
extremely dilute disordered networks of microscopic particles (porosity 95–98%). Aerogels
are important in many technological contexts such as in catalysis, gas separation, oil recovery,
and purification [128]. An example of particular relevance in the present context is liquid
chromatography, where aerogels composed of molecules with polar headgroups are employed
for the purification of (polar) mixtures [129].

From a theoretical point of view, investigation of a dipolar—or any—model fluid adsorbed
to an aerogel is significantly more complicated than in the bulk. This is due to the quenched
disorder realized by the nearly random aerogel network. Only in the 1990s were statistical–
mechanical tools to deal with this problem established, in particular a replica-integral equation
formalism pioneered by Given and Stell [130–132]. These developments, as well as the
first applications on ‘simple’ systems with spherical interactions, have been reviewed by
Rosinberg [133] and Pizio [134]. In the following we focus on recent replica-integral equation
studies [135–141] and computer simulations [137, 138] of confined dipolar fluids.

4.1. Models and theoretical treatment

All investigations of disordered adsorbed dipolar systems employ the concept of a quenched-
annealed (QA) mixture [133, 134] where the dipolar fluid molecules equilibrate in a solid
‘matrix’ of particles frozen (quenched) in a disordered configuration. The latter is chosen
according to a distribution P({Q}) (with {Q} = Q1, . . . ,QNm being the set of matrix particle
coordinates which is typically assumed to be an equilibrium (canonical) distribution established
at some inverse temperature β0. In the simplest case, the matrix particles are just neutral (hard)
spheres [137, 139]), but more complicated situations such as charged matrices [138] or matrices
consisting of anisotropic particles [136, 140, 141] have also been considered.

The adsorbed dipolar fluids investigated so far are DHS fluids [137, 138], Stockmayer
fluids [139–141], and, in one case, a more realistic polar liquid composed of molecules with
several sites [136]. In order to compute structural and thermodynamic properties of these
annealed, yet perturbed, fluids, one needs to note that thermal averages 〈· · ·〉 involving the
fluid’s microscopic variables, still depend on the specific realization of the matrix. Thus,
an additional average over different matrix configurations is required, yielding [〈· · ·〉Q] =∫

d{Q} 〈· · ·〉Q P({Q}). For example, the total correlation function between two fluid particles
with coordinates q = (r, ω) and q′ = (r, ω) (in an macroscopically homogeneous and
isotropic system) is defined as

( ρ

4π

)2
hff(r̄, ω, ω′) ≡





〈
N∑

i 
= j

δ(q − qi)δ(q
′ − q j )

〉

Q



 −
( ρ

4π

)2
, (4.1)

where r̄ = r − r′. In computer simulations of adsorbed fluids, the double average (4.1) has
to be performed explicitly by evaluating the thermal averages for several (e.g., six [137, 138])
different matrix configurations.

The idea of the replica approach is to circumvent the double average by relating the original
QA system to a completely artificial, but fully annealed system. This is done by introducing, on
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the basis of a simple mathematical identity [142], n copies α = 1, . . . , n of the fluid variables.
The resulting ‘replicated’ system is a (n + 1)-component fluid mixture [132] defined by the
Hamiltonian

H rep = β0

β
H mm({Q}) +

n∑

α=1

(
H ff({qα}) + H fm({qα}, {Q})) , (4.2)

where the sub-Hamiltonians H mm(ff,fm) contain the interactions between the (former) matrix
and the fluid particles. All particles in the multicomponent replicated system are mobile,
with the implication that this system can be treated by standard liquid state approaches such
as integral equation theories [78]. However, corresponding physical quantities are related to
those of the original QA system only in the limit n → 0, e.g.

hff (r̄, ω, ω′) = lim
n→0

hrep
αα (r̄, ω, ω′), (4.3)

where hrep
αα is the total correlation function between two fluid particles of the same copy. The

standard way to deal with this problem is to start from the integral equations for the (n + 1)-
component replicated system (for an integer n) and to assume permutation symmetry between
the replicas, which then allows us to perform the n → 0 limit [130–132]. The resulting replica-
symmetric Ornstein–Zernike (RSOZ) equations, which were originally derived for spherical
systems, can be easily generalized to anisotropic systems [143], and can be numerically solved
with the same techniques as developed for bulk fluids. This is described in detail in [137–140];
the corresponding interaction site formulation can be found in [136]. What is important to note
is that the RSOZ equations are exact relationships, as are the OZ equations for bulk (dipolar)
fluids. The approximate character of replica-integral equations is introduced through the
closure expression relating the correlation functions to the pair potentials. The investigations
on adsorbed DHS [137, 138] and Stockmayer fluids [139–141] are based on variants of the
HNC equation introduced in (2.7).

4.2. Properties of dipolar model fluids in disordered media

The simplest disordered medium is realized by a hard-sphere (HS) matrix, resulting in purely
repulsive fluid–matrix interactions. Their influence on the structure and thermodynamics of
adsorbed DHS fluids (in the isotropic high-temperature phase) has been studied by Fernaud
et al [137], who employed both replica-HNC theory and grand-canonicalMC simulations. The
HNC theory proved to be quite accurate at temperatures above the phase transition regime. The
results also indicate that the presence of the matrix facilitates the transition into ferroelectric
states. Similar observations were made by Spöler and Klapp [139] who employed an RHNC
approximation to investigate the phase behaviour of an adsorbed Stockmayer fluid. Based
on investigation of the dielectric constant, these authors found the ferroelectric transition
temperatures to increase with increasing matrix density. A further main finding from [139] was
that the vapour–liquid (VL) transition occurring in bulk Stockmayer fluids (see section 2.1) still
takes place in matrices with sufficiently high porosity, such as 95%. This is a value typical for
real silica aerogel, where VL transitions have indeed been observed experimentally [144, 145].
The VL critical point of the Stockmayer model system is shifted towards a lower temperature
and density, in agreement with previous results on simpler fluids in HS matrices [146, 147].
Shifts towards lower temperature and higher densities, which is the situation encountered in
experiments [144, 145], are only observed in the presence of additional attractive fluid–matrix
interactions [139]. Spöler and Klapp also showed that the effects of HS matrices on the VL
transition can be reproduced when the dipolar model fluid is approximated by a fluid with
angle- (Boltzmann-) averaged dipolar interactions [141].
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More dramatic effects arise when the perturbation induced by the disordered matrix
couples directly to the dipole moments of the fluid particles. An example are charges on
the matrix particles, for which the influence on a DHS fluid has been studied by Fernaud et al
[137]. They report a significant decrease of the dielectric constant, and an enhanced tendency
for dipole association at low densities. Finally, Spöler and Klapp [140] have considered dipolar
disordered matrices, using again replica-RHNC theory. Similar to charges, dipolar fluid–matrix
interactions play a central role in liquid chromatography where polar liquids are adsorbed to
disordered materials composed of molecules with polar headgroups [129]. Concerning the
VL transition of the adsorbed Stockmayer fluid, the dipolar fields generated by the matrix
act effectively as an attractive isotropic interaction between the fluid and the matrix [140].
The anisotropic nature of the dipolar interactions plays a more dominant role at high fluid
densities where one observes a pronounced decrease of the dielectric constant, and a strong
degree of local orientational ordering of the fluid particles along the local fields generated
by the matrix [140]. Moreover, an instability of the dielectric constant, that is a precursor
of ferroelectric ordering occurring both in bulk Stockmayer fluids [54, 214] and in fluids in
non-polar matrices [139], is observed only for very small dipolar fluid–matrix couplings [140].

This suggests that larger fields destroy the ferroelectric ordering as one might indeed
expect on physical grounds. However, even for the weakly disturbed systems it seems
likely that the frozen dipolar matrix fields influence the structure inside the low-temperature
ferroelectric state. Based on work on related systems such as nematic liquid crystals in
disordered silica matrices (which have been intensely studied both experimentally [148, 149]
and theoretically [150–152]) one could imagine that the long-range ferroelectric ordering
typical for bulk fluids is replaced by some type of short-range or ‘quasi’-long-range ordering.
In our opinion, a closer investigation of the nature of the low-temperature states in disordered
dipolar systems is currently beyond the replica-integral equation approach. This is partly
because of technical factors (specifically, the increasing complexity of the Ornstein–Zernike
equations in ordered states), but also because more simulation data are required in order
to test and improve the closure approximations (including a discussion of replica-symmetry
breaking [142]) under strongly coupled conditions.

5. Positional disorder

Another type of quenched disorder occurs in systems of dipolar particles with the positions
being frozen in an irregular configuration. Examples for such systems, which seem
better described as amorphous solids rather than as liquids, are mixed crystals with
polar impurities (e.g., K1−x LixTaO3) [153, 154], diluted dipolar-coupled magnets (e.g.,
LiHoxY1−x F4) [155, 156], assemblies of ultrafine ferromagnetic particles [157, 158], and
‘frozen ferrofluids’ [159–162]. The latter systems result from a quench of an equilibrated
ferrofluid into a state below the freezing temperature of the non-magnetic solvent. This fixes
the positions of the magnetic particles, whereas their dipole moments are still relatively free
to rotate (except of random anisotropies generated by the frozen easy axes of the particles).

A common feature of the systems mentioned above is that the frozen positional structure
is more or less random. Under these conditions, the anisotropy of the dipolar interaction
necessarily introduces competition between ferromagnetic and antiferromagnetic interactions,
with which the frozen system (in contrast to a dipolar fluid) cannot deal by developing suitable
spatial arrangements. Moreover, the long-range nature of the dipolar coupling implies that
many competing interactions can simultaneously influence the local field on a particular dipole.
From this point of view, positionally frozen dipolar systems are often highly frustrated systems,
which is consistent with the spin-glass-like behaviour detected in experiments of several mixed
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crystals [153, 154] and frozen ferrofluids [159]. The observed glassy behaviour (such as
irreversibilities in polarization/magnetization measurements) seems to be restricted to very
small dipole concentrations, that is, conditions where positional randomness is expected to
play a dominant role. Some of the experimental observations have been explained by local
mean-field theories [163–166] and computer simulations [167].

Another fundamental question on positionally frozen dipolar systems, especially when
it comes to denser systems, concerns the existence of long-range orientational ordering.
Interestingly, the answer appears to depend on the dimension of the dipolar degrees of
freedom. Specifically, long-range order has been detected experimentally—and reproduced
theoretically [165]—in diluted dipole-coupled magnets [155, 156],where the magnetic degrees
of freedom are essentially ‘Ising dipoles’ (due to strong crystal anisotropies). On the other
hand, frozen ferrofluids, where the dipoles are three dimensional, do not display any global
ordering [159].

Theoretical results on three-dimensional, positionally dipolar systems are contradictory.
In particular, a mean-field approach (MFT) [154] put forward by Zhang and Widom [168]
suggests that quenched positional disorder simply reduces the range of the ordered phase in
the temperature–density phase diagram (compared to fully coupled 3D dipolar fluids). On the
other hand, subsequent results based on MD calculations by Ayton et al [75, 76] indicated that
the systems rather freeze orientationally into a glass-like state as the temperature is decreased.
As discussed by Ayton et al [75, 76], one may interpret this discrepancy either as a failure of the
MFT (which tends to underestimates frustration) or as a failure of the simulations (which might
not have reached equilibrium). Subsequent theoretical results by Klapp and Patey [169] have
shed some new light on this question. Their approach, which was later extended to Heisenberg
systems by Lomba et al [170, 171], is a variant of the replica theory employed for disordered
confined fluids (section 4).

5.1. Replica approach and the occurrence of global ferroelectric ordering

The simplest model for a positionally frozen dipolar system consists of spherical particles
with the positions fixed according to a distribution P({r}) = P(r1, . . . , rN ), and with freely
rotating dipole moments. Thus, thermal averages 〈. . .〉r over the orientational degrees of
freedom depend on the spatial configuration {r} and need to be supplemented by an average
over P({r}). The resulting double averages can be circumvented [169] by means of the
replica method, in analogy to the corresponding procedure for partly quenched mixtures (see
section 4.1). The only difference is that for the latter systems quenched and annealed variables
belong to different particles, while for the present system one particle involves both a quenched
variable (its position) and an annealed degree of freedom (its orientation). As a consequence,
the ‘replicated’ system corresponding to the positionally frozen dipolar system (in the limit
n → 0) is nothing else than a special, one-component dipolar fluid, where each (spherical)
particle carries 1 + n degrees of freedom: the particle’s position and the orientation of n dipole
moments within the particle. Choosing a canonical distribution (at inverse temperature β0) for
P({r}), the corresponding replicated Hamiltonian is given as [169]

H rep = β0

β

∑

i> j

uSR(ri j) +
n∑

α=1

∑

i> j

uDD(ri j , ω
α
i , ωα

j ). (5.1)

Based on (5.1), a set of replica-integral equations in the HNC approximation was derived [169].
Numerical solutions were obtained for systems in globally isotropic states, with the
consequence that long-range ferroelectric ordering could only be detected via a divergence
of the dielectric constant ε. Results are shown in figure 4. Based on the behaviour of ε,
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Figure 4. Overview of the replica-HNC results for a frozen dipolar system with randomly
distributed positions in the temperature–density plane. The filled circles indicate the lowest
temperatures where numerical solutions could be obtained; the solid line is simply to guide the
eye. The theory predicts ferroelectric order for densities above the dashed line. Also shown
is the boundary of the ferroelectric phase according to mean-field theory (MFT) [168]. The
square indicates the density and the lowest temperature investigated in MD simulations [75, 76].
From [169].

ferroelectric order was found to occur at low temperatures and densities beyond a threshold
density (ρ∗

min ≈ 0.5), indicating that the long-range dipolar interactions (which favour ordering)
may indeed overcome the short-range frustration induced by positional disorder.

The existence of a threshold density is consistent with the experimental results for frozen
ferrofluids [159, 161] where the dipole density was typically rather small (ρ∗ < 0.1) and
no spontaneous polarization was found. At high densities, the HNC predictions for the
ferroelectric transition temperatures depend strongly on the degree of spatial correlation in the
underlying system of frozen spheres [169]. For a randomly frozen system (i.e., g(r) = 1), the
transition temperatures are found to be much lower than that those predicted by the MFT [168],
and also considerably lower than the temperature where the MD simulations [75, 76] (lacking
evidence for ferroelectric order) have been performed. Moreover, the HNC predicts a gradual
local freezing of the dipole axes upon decreasing temperature (induced by inhomogeneities in
the spatial structure). The HNC results thus supplement rather than contradict the MD results,
which also indicate some sort of orientational freezing [75, 76]. On the other hand, strong
positional correlations can push the transition towards temperatures even higher than those in
equilibrated dipolar fluids. This is consistent with subsequent results for positionally frozen
Heisenberg fluids by Lomba et al [170, 171].

6. Field-induced structural effects

External magnetic or electric fields are one of the most obvious perturbations for fluids with
permanent dipole moments, since these fields couple directly to the particles via the (external)
one-body potential

	ext(1) = −µ1 · H0(1). (6.1)

External fields are particularly important in the context of ferrofluids [10–12]: in these systems,
the permanent magnetic dipole moments of the colloidal particles are typically so large that
even small field strengths H0 = |H0| yield a magnetic field energy comparable to the thermal
energy, i.e., µH0/kBT ≈ 1. Therefore, ferrofluids respond much more strongly to external
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fields than polar molecular fluids, where the individual (electric) dipole moments are generally
small [5]. The resulting excellent possibilities to control the material properties of ferrofluids
by external fields have led to a broad variety of technical applications [10–12], many of which
concern the hydrodynamic [12] and rheological behaviour (in particular, the viscosity), and
the related microstructure. Theoretical approaches towards a description of these phenomena
have been recently summarized by Hess [13] and Kröger et al [25]. In the following we focus
on recent progress in describing the equilibrium behaviour of ferro- (and other dipolar) fluids
in external fields.

Most of the theoretical studies in this context concentrate on calculating averaged
quantities such as the magnetization M(H0). At very low concentrations, ferrofluids display
ideal gas behaviour, that is (for monodisperse systems), M = MsatL(α) with Msat being the
saturation magnetization,L(α) = coth(α)−α−1 is the Langevin function, and α = µH0/kBT .
In order to investigate systems at higher concentrations, various semi-analytical approaches
have been proposed, including thermodynamic perturbation theory [172] and a theory based
on Mayer expansions of the interparticle correlations [173, 174]. These approaches, which
have been very recently reviewed by Huke and Lücke [43] perform well in quite dilute
ferrofluids (magnetic volume fractions up to ∼10–12%) with moderate coupling strengths
(µ2/kBT σ 3 � 1), but break down when denser systems or more strongly coupled ferrofluids
are considered [175]. Clearly, these drawbacks are due to the increasing importance of
interparticle correlations [43].

The most important correlational effect of an external field on a ferrofluid (and any strongly
coupled dipolar fluid) is the self-assembly of particles into chain-like structures parallel to the
field direction, an effect which was theoretically predicted as early as the 1970s by de Gennes
and Pincus [56] together with their work on spontaneous chain formation (see section 2). The
practical importance of field-induced chain formation results from the accompanying strong
modifications of the ferrofluids rheological behaviour [25], particularly the abrupt increase
of viscosity [11]. Field-induced chain formation has been directly observed and analysed in
computer simulations of dipolar model fluids [57, 176, 177]. Experimental visualization of
the self-assembly has been achieved in two-dimensional ferrofluids [67, 68] and other dipolar
colloidal systems [36, 34] where the external field points along a direction within the plane
to which the particles are confined. In particular, Velev and co-workers [36, 34] have shown
that sufficiently large fields drive the chains (formed already at smaller fields) to coalesce into
novel two-dimensional crystal structures (see figure 1). A summary of computer simulation
results concerning 2D dipolar fluids in a field is given in the review of Weis [42].

Coming back to three-dimensional systems, we note that scattering experiments (see, e.g.,
[178–181]) indicate the field-induced aggregation into chains by a strong anisotropy of the
scattering intensity, i.e. the structure factor S(k) of the colloidal magnetic particles, which in
turn reflects a strongly anisotropic pair correlation function g(12). These anisotropies have
been recently analysed by MC [182] and Brownian dynamic [183] computer simulations. The
latter reproduced the experimentally observed increase (decrease) of the scattering intensity in
the direction perpendicular (parallel) to the field.

Theoretically, the natural framework to investigate the anisotropic correlations induced by
external fields is the integral equation approach. Recent progress in this direction is summarized
below in section 6.1. We close this brief overview by noting that external fields also have,
naturally, an effect on the overall phase behaviour of dipolar model fluids. Most studies in this
context concern the vapour–liquid transition of Stockmayer fluids. In particular, Stevens and
Grest have shown via GEMC simulations that the external field generally increases the critical
temperature [184]. Similar findings emerge from density functional theory [70] and other
theoretical studies based on (approximate) free energy ansatzes [172, 69]. The behaviour of
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dipolar mixtures in external fields is briefly discussed at the end of section 7. Experimentally,
evidence for a stabilization of the condensation transition of ferrofluids by an external magnetic
fields has been reported in [185, 186].

6.1. Integral equations for dipolar fluids with fluctuating orientational order

The first integral equation studies on dipolar fluids in external fields were performed in the 1980s
and were based on highly idealized models where the dipoles are constrained to be perfectly
aligned. Structural and thermodynamic properties of these systems have been investigated both
within the mean-spherical approximation (MSA) [187, 188] and by RHNC theory [189, 190].
For finite external fields, however, one would expect the orientational order to be non-perfect
or fluctuating. The development of appropriate integral equation techniques started only in the
late 1990s, beginning with a series of studies on simpler orientable fluids such as the Heisenberg
spin fluid [191–193] and other models with separable interactions [194]. The first (and so far,
the only) applications to the more complicated dipolar case concern two-dimensional DHSs in
the presence of an out-of-plane field [117], three-dimensional DHS systems [195], and systems
of dipolar ellipsoids [196]. All of these studies consider homogeneous external fields yielding
singlet densities of the form

ρ(1) = ρ(ω1) = ρ

2π
α(x1), (6.2)

where α(x1) = α(cos θ1) is a normalized orientational distribution function and cos θ1

describes the orientation of dipole 1 with respect to the field direction. In the absence of a
field, the distribution α(x1) is just a constant, whereas perfect orientational order corresponds to
αperfect(x) = δ(x−1). At finite field strengths, α(x)has to be determined self-consistently along
with the two-body correlations describing the structure of the ordered fluid. This means that
the usual integral equations consisting of the Ornstein–Zernike relation plus a closure relation
have to be supplemented by a third equation relating two-body correlations, the distribution
α(x) and the external potential (6.1). References [195] and [196] are based on the exact
Lovett–Mou–Buff–Wertheim (LMBW) equation [197, 198]

iL1 ln ρ(1) + iL1β	ext(1) = 1

V
∫

dr1

∫

dr2

∫

dω2c(12)iL2ρ(2), (6.3)

where V is the (fixed) volume and L = −i(r × ∇) is the angular momentum operator.
An alternative is to use the—likewise exact—first member of the Born–Green–Yvon (BGY)
hierarchy [78], which involves the pair correlation function and the gradient of the interaction
potential [117]. We note that both single-particle equations are capable of generating a non-
trivial distribution even in the absence of a field (spontaneous ordering). From a technical point
of view, the necessity to solve simultaneously three instead of two integral equations renders
the approach somewhat more involved compared to the isotropic case. A further increase
of the numerical effort arises through the reduced symmetry (cylindrical versus spherical),
which implies that the orthogonal angle expansions for the two-body correlations become
more complicated as well [195, 196].

Results obtained so far indicate that integral equation theories for ordered dipolar fluids
are similarly accurate as in the isotropic case. Explicit comparison with computer simulation
results has been made by Lomba et al [117] who considered DHS monolayers with an out-
of-plane external field. It is shown that the integral equation method (HNC approximation)
provides an accurate description both of the structure and of the thermodynamic quantities
for moderate dipolar coupling strengths µ∗2 ≈ 1. Klapp and Patey [169] have studied
orientationally ordered three-dimensional DHS fluids. As in the isotropic case [5], the MSA
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and the RHNC closure predict quite different results both for correlation functions and for
the dielectric behaviour, with the RHNC results appearing more reliable in terms of internal
consistency. Based on the RHNC approximation, it is also possible to study the isotropic–to–
ferroelectric transition. This is done [195] by stabilizing the numerical calculations with an
infinitesimal external field (in a true zero-field situation, the restoring force for a rotation of the
global director is identically zero, yielding infinite perpendicular fluctuations). The integral
equation results obtained within the ferroelectric phase reveal a strongly anisotropic dielectric
response, and chain formation along the global director. This is consistent with computer
simulation results for ferroelectric and field-ordered liquid phases [57, 176, 177].

Finally, the RHNC description of the ferroelectric liquid phase has also been employed as
a reference in a second-order perturbation density functional study [199] for crystallization.
Besides predictions for the preferred ferroelectric lattice structures, the theory also indicates
that ferroelectric ‘reference’ liquid is indeed stable in a small range of densities. This finding
contradicts earlier density functional studies [200, 201] based on isotropic reference states, but
agrees with computer simulation results (see figure 2).

7. Size heterogeneities

Throughout this article we have considered pure dipolar fluids consisting of identical particles.
This assumption, however, is not fulfilled in many real dipolar systems which are typically
characterized by some sort of non-uniformity. In ferrofluids, for instance, non-uniformity
is naturally introduced by the essentially omnipresent polydispersity. In typical ferrofluids,
the sizes σi of the magnetic particles are distributed according to a log-normal or gamma
distribution (with a mean diameter of about 10 nm) [43]. The magnetic dipole moments are
coupled to the sizes through the relation

mi = m Vi = m πσ 3
i /6 (7.1)

with m being the specific magnetization. Size polydispersity therefore yields automatically a
non-uniformity in the distribution of dipole moments and the resulting interaction strengths.
Recent experimental work (for a review, see [11]), as well as theoretical [83, 172, 174] and
computer simulation studies [182, 202–204], has shown that the dipolar non-uniformities can
indeed have a profound influence on the material properties of ferrofluids. For example,
the presence of some larger particles in a system of predominantly smaller particles yields a
significant increase of the field-induced magnetization and the initial susceptibility [204, 174].
Regarding the microstructure in strongly coupled systems, the computer simulations [182, 204]
demonstrate that the self-assembled chains mostly consist of larger particles, whereas the
majority (but not all) of the smaller particles remains non-aggregated. These observations
can be reproduced by theory based on a free energy model, where the system is treated as
a collection of non-interacting chains of different sizes [83]. The initial susceptibility of
polydisperse systems has been recently considered by various free-energy approaches (for a
summary, see [43]). An alternative approach was provided, as early as the 1970s and 1980s, by
generalizations of integral equation techniques for one-component (isotropic) dipolar fluids to
the mixture case (see [205–207] and [208] for applications of the MSA and the RHNC theory,
respectively).

Further interesting effects of polydispersity appear when it comes to the phase behaviour.
In particular, there is experimental evidence [86, 185, 209] that the vapour–liquid transition of
polydisperse ferrofluids is accompanied by a saturation of larger (i.e., more strongly interacting)
particles in the denser (liquid) phase. This phenomenon, which is of great importance as a
method to size-separate the system [185], has been reproduced in a recent computer simulation
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study [210] of the condensation of a polydisperse ferrocolloid. It also indicates that in
polydisperse ferrofluids, which may be regarded as multicomponent mixtures, condensation
transitions are always—at least to some degree—coupled with demixing phase transitions.
However, a profound understanding of the appearance of these phase transitions and their
dependence on external conditions (thermodynamic states, external fields) is still missing. The
same is true for fluid–fluid phase transitions in molecular polar mixtures. The latter systems
are intrinsically interesting since their polarities, and thereby their solvation properties, can
be tuned by varying the composition [211, 212]. In order to make use of these properties,
however, it is vital to know under which thermodynamic conditions these mixtures demix
and/or condense. Again this is a topic which is so far not well understood, partly because
computer simulations of model dipolar mixtures [213–215] are necessarily restricted to small
portions of the parameter space.

In the following we summarize recent density functional and RHNC integral equation
studies of Range and Klapp [216–219] for the fluid–fluid phase behaviour of the first
approximation of polydisperse ferrofluids, that is binary dipolar mixtures. The same
simplification has been made in most of the previous theoretical and simulation studies of
ferrofluids (see, e.g., [83, 204, 220, 221]). The work of Range and Klapp goes beyond earlier
theoretical studies in that the full interplay of condensation, demixing, and ferromagnetic
ordering is considered.

7.1. Phase behaviour of binary dipolar mixtures

The investigations [216–219] are mainly based on modified mean-field density functional
theory (MMFT), which has also been employed by Dietrich and co-workers [55, 70–
72, 222] to study one-component dipolar fluids and related anisotropic systems such as
Heisenberg spin fluids [223]. Within this framework, phase diagrams are determined by
minimizing an approximate grand-canonical free energy functional �[ρ]. Isotropic and
spatially homogeneous ferromagnetic phases are included by considering singlet densities of
the form ρa(r1, ω1) = ρa(2π)−1ᾱa(cos θ) where the subscripts a and b denote the components
considered, and ᾱa(cos θ) are orientational distribution functions of the form already introduced
in section 6.1. The resulting MMF functional of a mixture of DHS is given by [216, 218]

�

V =
∑

a

ρa

β

[
ln(ρa�

3
a) − 1

]
+

∑

a

ρa

β

∫ 1

−1
dx ᾱa(x) ln(2ᾱa(x)) −

∑

a

µaρa

− H0

∑

a

maρa

∫ 1

−1
dx ᾱa(x) x +

Fex
HS

V +
Fex

DD

V , (7.2)

where the first two terms on the right-hand side of (7.2) correspond to the ideal (translational
and orientational) part of the free energy, µa are the chemical potentials, H0 is the strength of
a homogeneous external field, and Fex

HS is the excess free energy of the underlying mixture of
mono- or bidisperse hard spheres [224–226]. The MMF approximation [70, 222] enters the
dipolar contribution to the excess free energy, Fex

DD, and consists in setting the pair distribution
function gab(12) involved in the exact expression for Fex

DD equal to its low density limit, i.e.,
gab(12) → exp[−βuab(12)] (see [216, 217] for details). Minimization of the functional (7.2)
with respect to ρa and αa(x) then yields the equilibrium densities at given (µa, T,V).

Based on the functional (7.2), Range and Klapp have investigated binary dipolar mixtures
of increasing complexity, starting from the most basic model where the two components differ
only in their dipole moments (i.e., mA 
= mB) and the external field H0 is zero [216, 217].
Despite these restrictions, the results reveal complex fluid–fluid phase behaviour involving
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Figure 5. MMFT phase diagrams in the density–temperature plane (left) and the concentration–
temperature plane (right) for monodisperse DHS mixtures at  = m2

B/m2
A = 0.60 and �µ∗ =

µB − µA = 3.0 (T ∗ = kBT σ 3/m2
A, ρ∗ = (ρA + ρB)σ 3, cA = ρA/ρ). Dashed lines are lines of

critical points separating the isotropic gas (ig) from ferromagnetic fluid (fl) phases, CEP and TCP
denote critical end points and tricritical points, respectively, and CP corresponds to a demixing
critical point between two ferromagnetic fluids with different compositions. The inset on the
left-hand side additionally contains the density–temperature diagram at �µ∗ = 1.3. From [216].

both isotropic-to-ferromagnetic phase transitions (which also occur in the pure system) and—
particularly at small values of the parameter  = m2

B/m2
A—demixing phase transitions.

Exemplary phase diagrams are given in figure 5. The demixing transition separates a fluid
saturated with less strongly coupled B particles and a denser fluid with strongly coupled
A particles. This is, in principle, consistent with the condensation/demixing behaviour
observed in real ferrofluids (see, e.g., [185]). Contrary to reality, however, the MMFT predicts
demixing only at quite high packing fractions corresponding to the ferromagnetically ordered
region of the phase diagram. The same is true for bidisperse mixtures [218], where the two
species of DHSs differ not only in their dipole moments, but also in their sizes. On the other
hand, more sophisticated approaches such as the RHNC theory [227, 228, 217] (and simulations
for the limiting case  = 0 [229]) do indeed already predict demixing in the isotropic phase.
This discrepancy underlines the relevance of correlational effects for the existence of demixing
transitions in dipolar systems without dispersive interactions. Indeed, considering Stockmayer
instead of DHS mixtures the MMFT yields isotropic demixing transitions in close agreement
to the RHNC predictions [217].

A generic finding from both the MMFT studies [216–218] and an accompanying RHNC
investigation [217] is that the ferromagnetic transition in dipolar mixtures is generally
shifted towards significantly lower temperatures and/or higher densities compared to the one-
component case, indicating that spontaneous parallel ordering in dipolar systems is generally
strongly destabilized by non-uniformity in the dipole moments. This is consistent with a recent
MC study of binary DHSs [202].

Finally, the case H0 
= 0 has also been studied within the MMFT [219]. For mixtures
dominated by one of the components, MMFT predicts the tricritical point of the transition
between an isotropic gas and a ferromagnetic liquid occurring at H0 = 0 to be changed
into a critical point separating two magnetically ordered phases of different densities. The
corresponding critical temperature increases with H0. Completely different behaviour is found
in the context of the demixing phase transitions, where the corresponding critical temperature
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is found to decrease with H0. This sensitivity suggests that external magnetic fields can indeed
be efficiently used to control the mixture’s phase behaviour over a large temperature interval.

8. Summary and perspectives

To summarize, we have demonstrated that fluids interacting by long-ranged, direction-
dependent dipolar interactions are strongly affected even by the most simple perturbations
which do not couple directly to the dipole moments. Key examples are insulating walls or purely
repulsive, disordered confining media: Both promote the tendency of dense dipolar fluids to
develop orientational ordering (although the reasons in the two cases are quite different).

The theoretical progress in treating perturbed dipolar fluids on the basis of methods
previously established for bulk systems is substantial. In this topical review we have discussed
several approaches such as replica-integral equations for dipolar fluids in the presence of
disordered confinement and positional quenched disorder. Both types of disorder have a
significant influence on phase transition temperatures, and can give rise to interesting structural
phenomena such as local freezing of the dipole axes in systems with positional disorder. From
a technical point of view, it appears that replica-integral equations yield reasonable results at
small degrees of perturbation but become inconsistent (or numerically too complex to solve)
under strongly coupled conditions. As a result, several important questions such as the nature
of the disordered (possibly glassy) low-temperature ferroelectric states remain to be answered.
An additional problem is the lack of simulation results for strongly coupled, disordered dipolar
systems to test the theoretical predictions.

We have also discussed recent integral equation methods to investigate dipolar fluids with
field-induced or spontaneous orientational order. First applications have focused on quite
dense dipolar fluids. The increasing interest in ferrocolloids may stimulate further studies of
more dilute systems, for which a large number of experimental and simulation data concerning
the field-induced magnetization, susceptibility, and the anisotropic structure factor already
exist. Given a positive evaluation, integral equation methods for ordered dipolar fluids could
be established as an accurate, and computationally less expensive alternative to computer
simulations, similar to the role of conventional integral equations for the investigation of bulk
dipolar fluids.

Finally, there are many open questions concerning the behaviour of confined dipolar
fluid films. Indeed, only recently efficient techniques to handle the long-range interactions
in computer simulations of dipolar films have been developed [42]. As a consequence,
the overall phase behaviour of dipolar fluid films is at present unclear. The investigations
discussed in this review may provide the basis for further studies concerning the influence of
boundary conditions, and in particular the impact of dielectric or conducting versus the non-
conducting walls considered in section 3.1. Indeed, conducting walls are most important in
experimental situations such as AFM experiments involving polar solvents, and in biological
contexts [230, 231]. Moreover, in many of these situations, the polar fluid is subject to
an additional external field, the influence of which has so far only been studied for very
specific systems. Another open question concerns the structure, both in the ground state
and at non-zero temperatures, of dense dipolar systems at very small wall separations. This
topic is relevant not only from a fundamental point of view, but also in the context of the
search for novel magnetic crystals [32, 127]. Another problem receiving growing interest is
the behaviour of planar or near-to-two-dimensional magnetic and electric systems with field-
induced dipoles [33, 38, 232].

In conclusion, the statistical mechanics of dipolar model fluids under external perturbations
raises many interesting questions, the solution of which is important not only from a
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fundamental point of view, but also for future applications of these fascinating fluids. In
the present topical review we have focused on equilibrium problems and on systems with
permanent dipoles. One may expect, however, that the results and tools developed within this
context will serve a basis for future, more general investigations including dynamic properties
and non-equilibrium phenomena such as shear-flow or transport through complex geometries.
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Forstmann. I also thank S Hess and H Löwen for stimulating discussions. Financial support
from the Deutsche Forschungsgemeinschaft via the Emmy–Noether Programme is gratefully
acknowledged.

References

[1] Dhont J K G, Gompper G and Richter D 2002 Soft Matter: Complex Materials on Mesoscopic Scales (Reihe
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